Bioinformatics construction of the human cell surfaceome

1São Paulo Branch, Ludwig Institute for Cancer Research, 01323-903 São Paulo, Brazil; 2Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 01404-900 São Paulo, Brazil; 3Hospital Albertos Oswaldo Cruz, 01323-903 São Paulo, Brazil; 4Departamento de Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090 São Paulo, Brazil; 5Fluidigm Inc., South San Francisco, CA 94080; 6New York Branch, Ludwig Institute for Cancer Research, New York, NY 10158; and 7Harvard Catalyst Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA 02115

Contributed by Lloyd J. Old, July 16, 2009 (sent for review April 25, 2009)

Cell surface proteins are excellent targets for diagnostic and therapeutic interventions. By using bioinformatics tools, we generated a catalog of 3,702 transmembrane proteins located at the surface of human cells (human cell surfaceome). We explored the genetic diversity of the human cell surfaceome at different levels, including the distribution of polymorphisms, conservation among eukaryotic species, and patterns of gene expression. By integrating expression information from a variety of sources, we were able to identify surfaceome genes with a restricted expression in normal tissues and/or differential expression in tumors, important characteristics for putative tumor targets. A high-throughput and efficient quantitative real-time PCR approach was used to validate 593 surfaceome genes selected on the basis of their expression pattern in normal and tumor samples. A number of candidates were identified as potential diagnostic and therapeutic targets for colorectal tumors and glioblastoma. Several candidate genes were also identified as coding for cell surface cancer/testis antigens. The human cell surfaceome will serve as a reference for further studies aimed at characterizing tumor targets at the surface of human cells.

Results and Discussion

Definition of the Human Cell Surfaceome. Fig. 1 shows a schematic view of our strategy to identify human gene coding for cell surface proteins. First, we searched the whole set of known human genes (the Reference Sequence collection) for an annotated TM domain as reported by Pfam (4). This search returned 1,257 genes. In parallel, we submitted all of the translated sequences from the Reference Sequence collection to TMHMM (5), an algorithm that identifies TM domains by using a hidden Markov model-based strategy. TMHMM is considered the best algorithm for the prediction of TM domains, with specificity and sensitivity above 99% (5). TMHMM functions ab initio, and therefore it returned a larger set of TM proteins (4,819 genes). As expected, the great majority of the candidates identified by the Pfam analysis were within the set identified by TMHMM, resulting in a merged, nonredundant set of 4,843 gene candidates. Because TMHMM also identifies signal peptides of secreted proteins, we next excluded from our dataset all cases in which the region identified as TM by TMHMM was unique and within the first 50 aa, thus characterizing a signal peptide. This left us with 4,128 gene candidates. Because TM domains are not restricted to cell surface proteins, those candidates having a TM domain but already known to be exclusive to other cell membranes were excluded: Gene Ontology (GO) was used to filter out those cases, which left us with our final set of genes (3,702) believed to encode cell surface proteins. A list of all surfaceome genes is available in Table S1. We expect that our final list contains false-positive candidates because of a lack of information regarding their subcellular localization. One way to evaluate the rate of false-positives is to search for proteins in our list without an ab initio

Author contributions: J.P.C.d.C., P.A.F.G., A.A.C., J.M.O., and S.J.d.S. analyzed data; and A.J.S., A.A.C., L.J.O., and W.P.K. performed research; and the authors declare no conflict of interest.

1J.P.C.d.C. and P.A.F.G. contributed equally to this work.

2To whom correspondence may be addressed. E-mail: oldl@mskcc.org or sando@ludwig.org.br.

This article contains supporting information online at www.pnas.org/cgi/content/full/0907939106/DCSupplemental.
From identifying sequence features that characterize these proteins, prevented us means other than TM domains (e.g., phosphatidylinositol- or associated with the external side of the plasma membrane by having a TM domain. Proteins present at the cell surface but anchored to the plasma membrane. We found that categories such as “cell adhesion,” “transport,” and “cell–cell signaling” were significantly enriched in our dataset (Fig. S1). As another approach to test whether it was enriched with GO categories clearly associated with a TM domain. After excluding genes coding for proteins secreted or located in other subcellular compartments, we defined 3,702 genes as belonging to the surfaceome set. A subset of 902 genes were selected for experimental validation.

Because the surfaceome set is restricted to those proteins that have a TM domain, proteins present at the cell surface but anchored or associated with the external side of the plasma membrane by means other than TM domains (e.g., phosphatidylinositol-anchored) are not present in our dataset. The absence of a reliable sequence feature that characterizes these proteins prevented us from identifying ab initio these types of proteins, which will have to be later incorporated in our dataset.

To evaluate whether our dataset reliably represents the collection of cell surface proteins, a GO analysis was performed to evaluate whether it was enriched with GO categories clearly associated with plasma membrane. We found that categories such as “cell adhesion,” “transport,” and “cell–cell signaling” were significantly enriched in our dataset (Fig. S1). As another approach to test the robustness of our dataset, the representation of known families of cell surface proteins, like G-protein-coupled receptors (GPCRs), solute carrier (SLC) proteins, and cluster of differentiation (CD) antigens, was measured in the human cell surfaceome. Table 1 shows that it was possible to identify the great majority of these proteins: 85% of all 921 GPCRs, 81% of all 354 SLCs, and 82% of all 372 CDs. Those that were not identified either do not have a TM domain or were annotated as located in other subcellular compartments (Table 1). For most of these cases, further functional studies will be needed to confirm their subcellular localization. The Ig family of cell surface receptors was not analyzed because of the lack of a well-curated dataset. Because many members of this family are also members of the CD family, we believe that our human cell surfaceome well represents members of the Ig family as well.

The 3,702 surfaceome set corresponds to ~20% of all known human genes. This number is in accordance with other similar estimates for human and mouse (3, 6). The chromosomal distribution of the surfaceome set resembled the distribution of human genes in general except for a higher density on chromosome 11, due to a large cluster of olfactory receptors that map to this chromosome (Table S1).

Genetic Diversity Within the Human Surfaceome. Twenty years ago, Retting and Old (1) classified the genetic diversity at the cell surface level into four categories: (i) xenogenetic diversity, defined by the pattern of conservation and novelty between species; (ii) allogenetic diversity, defined by genetic polymorphisms; (iii) clonogenetic diversity, defined by somatic changes in specific cell populations within an individual; and (iv) epigenetic diversity, defined by differences in gene expression between cell types.

With the availability of many genome-wide types of data, we decided to explore these categories of diversity at the cell surface in more detail. Clonogenetic diversity (e.g., somatic mutations) will be explored in the context of the cancer surfaceome and published elsewhere.

Xenogenetic Diversity. The availability of genome sequences for a large variety of species allowed us to compare the human surfaceome with other species. First, the same bioinformatics strategy used for humans was used to identify the surfaceome of nine other species (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Gallus gallus, Bos taurus, Canis familiaris, Mus musculus, and Pan troglodytes). Fig. 2A is a schematic view of our findings. The major feature observed in our analysis is the increase in surfaceome complexity with the emergence of multicellularity. Although in Metazoa the surfaceome size is, on average, 20% of all genes in a given species, the same number is less than 10% for yeast. This could be largely accounted for by complexity involved in the construction of organs and their constituent cell types, as well as the emergence of an extracellular matrix (and their receptors). We then compared the surfaceome of all 10 species by using HomoloGene (www.ncbi.nlm.nih.gov/HomoloGene). The number of conserved genes in all pairwise comparisons is found in Fig. 2B. Although only 116 surfaceome genes (3% of the human cell surfaceome) are conserved between human and yeast, we observed a higher degree of conservation among mammals (1,530 genes are shared in all 10 species).

Table 1. Representation of known cell surface gene categories within the human surfaceome

<table>
<thead>
<tr>
<th>Category</th>
<th>GPCRs</th>
<th>SLCs</th>
<th>CDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>921</td>
<td>354</td>
<td>372</td>
</tr>
<tr>
<td>Present in surfaceome set, no. (%)</td>
<td>779 (85)</td>
<td>287 (81)</td>
<td>304 (82)</td>
</tr>
<tr>
<td>Absent from surfaceome set, no.</td>
<td>12</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Secreted proteins</td>
<td>11</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>Without TM domain</td>
<td>119</td>
<td>34</td>
<td>47</td>
</tr>
</tbody>
</table>

The total number of genes (first row) coding for GPCR, SLC, and CD were obtained by querying several databases (see **SI Methods** for more details). The number of genes classified in these three categories and absent in our surfaceome database is identified.
comparative analysis of the surfaceome in these species will be published elsewhere.

Allogenic Diversity. To explore the distribution of genetic polymorphisms in the human cell surfaceome, information available in the Single Nucleotide Polymorphism database (dbSNP) was integrated into our database. There are two ways in which genetic polymorphisms can affect the cell surface: (i) SNPs occurring in the enzymes involved in posttranslational modifications, such as carbohydrate synthesis, which may have an indirect effect on the surfaceome, and (ii) SNPs occurring directly in the genes belonging to the surfaceome set. Nevertheless, we only evaluated here the distribution of both coding and noncoding SNPs occurring directly in the surfaceome set. Although the surfaceome genes were slightly enriched for both coding and noncoding SNPs compared with all remaining human genes, the difference was not statistically significant (Fig. S2a). As expected, HLA coding genes, belonging to the MHC, are the most polymorphic genes in the surfaceome set (Table S1). Interestingly, genes classified as CD have a higher density of coding SNPs than GPCRs and SLCs (Fig. S2b). As can be seen in Fig. S2b, this effect is not due to the higher density of SNPs restricted to HLA genes, but rather a higher density in many CD genes throughout the SNP density distribution.

Detailed studies of polymorphisms affecting the surfaceome may be critical for the effective use of personalized medicine, especially for issues related to drug-response phenotypes.

Epigenetic Diversity. We capitalized on Massively Parallel Signature Sequencing (MPSS) expression data (7) from a panel of normal tissues to define the expression profile of the human cell surfaceome in normal cells/tissues. This large-scale profiling of the surfaceome in normal tissues has great potential value in facilitating the further development of therapeutic and diagnostic protocols. A limitation of this tissue analysis is that it does not provide cell type-specific expression information, but rather a composite of all of the different cell types in a tissue. The same limitation also exists for the analysis presented in the next section related to the cancer surfaceome. The characterization of the surfaceome specific to different cell types will require transcriptional profiling of single cells or immunohistochemistry analysis of cellular expression patterns as in the Protein Atlas initiative (www.proteinatlas.org).

Fig. 3 depicts the complex pattern of the surfaceome expression in normal tissues. Almost half of the surfaceome set (42%) presents a very broad expression pattern, being expressed in more than 20 normal tissues. A smaller fraction (~85 genes) is expressed in all normal MPSS libraries, a typical feature of housekeeping genes. On the other hand, a significant number of surfaceome genes (13%) have a restricted expression pattern among normal tissues. These gene products, if expressed in cancer, would be candidate tumor targets. We have also clearly identified a group of genes with preferential expression in certain tissues, such as brain and testis, as shown in Fig. 3. Genes having an expression restricted to testis (see below) are of interest as candidate genes coding for cancer/testis (CT) antigens (8).

The analysis was restricted to two types of tumors—GBMs and colorectal tumors—based on the abundance of publicly available gene expression analyses as well as our access to samples and clinical information. The surfaceome database was used to select genes for further experimental validation based on their expression in 305 SAGE (Serial Analysis of Gene Expression) libraries (97 and 208 derived from normal and tumor samples, respectively) extracted from SAGE Genie (9) and 37 normal libraries of MPSS (7). We selected 461 genes with restricted expression in normal tissues and expression in any tumor type, and 441 genes showing a significantly higher expression in GBMs or colorectal tumors (Fig. 1). This analysis generated a subset of 902 genes that were submitted to experimental validation by using a platform for large-scale measurement of cDNA levels (Biomark–Fluidigm). All primers and probes used in this study are listed in Table S2. Sixty-five RNA samples were used: 21 normal tissues (available commercially), 15 tumor cell lines of diverse origins, 11 colorectal tumors with two pools of normal colon, and 11 GBMs with five pools of normal

Fig. 2. Overall pattern of conservation in the surfaceomes of 10 species. (A) Numbers at branching nodes represent the level of conservation when the surfaceome of both species is taken into account. For example, there are 2,005 genes conserved and classified as surfaceome in both M. musculus and P. troglodytes.

<table>
<thead>
<tr>
<th>Species</th>
<th>M. musculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. sapiens</td>
<td>116</td>
<td>561</td>
<td>627</td>
<td>2,245</td>
<td>2,098</td>
<td>2,935</td>
<td>2,965</td>
<td>3,322</td>
<td>2,907</td>
</tr>
<tr>
<td>C. elegans</td>
<td>4,476</td>
<td>2,005</td>
<td>2,771</td>
<td>3,307</td>
<td>2,343</td>
<td>2,291</td>
<td>2,503</td>
<td>2,725</td>
<td>2,008</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>2,725</td>
<td>2,008</td>
<td>1,876</td>
<td>2,155</td>
<td>3,250</td>
<td>1,523</td>
<td>1,713</td>
<td>1,674</td>
<td>1,587</td>
</tr>
<tr>
<td>D. rerio</td>
<td>3,084</td>
<td>1,056</td>
<td>1,118</td>
<td>1,277</td>
<td>1,278</td>
<td>1,374</td>
<td>1,115</td>
<td>1,313</td>
<td></td>
</tr>
<tr>
<td>G. gallus</td>
<td>2,280</td>
<td>444</td>
<td>458</td>
<td>449</td>
<td>536</td>
<td>430</td>
<td>487</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>B. taurus</td>
<td>3,983</td>
<td>820</td>
<td>710</td>
<td>784</td>
<td>696</td>
<td>924</td>
<td>730</td>
<td>816</td>
<td>856</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>486</td>
<td>72</td>
<td>30</td>
<td>35</td>
<td>39</td>
<td>38</td>
<td>41</td>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>

Fig. 3. The Cancer Surfaceome. In exploring the human cell surfaceome with respect to differential expression in tumors, emphasis was placed on finding genes exhibiting a restricted expression in normal tissues and a differential expression in tumor samples, as well as identifying genes showing differential higher expression in tumors regardless of their expression in normal tissues. The analysis was restricted to two types of tumors—GBMs and colorectal tumors—based on the abundance of publicly available gene expression analyses. Two groups of genes exhibiting differential expression in normal tissues were selected: (A) restricted expression in normal tissues and expression in any tumor type, and (B) restricted expression in normal tissues and significantly higher expression in GBMs or colorectal tumors.
genes showing a restricted expression in normal tissues (Table S4), in at least one sample were selected for subsequent analyses. One qPCR measurement, all genes (593 genes) that were expressed among the dataset of expression in GBMs or colorectal tumors. Details on all of the samples can be found in Table S3. After one qPCR measurement, all genes (593 genes) that were expressed in at least one sample were selected for subsequent analyses.

Genes with a Restricted Expression in Normal Tissues and Differential Expression in GBMs or Colorectal Tumors. Among the dataset of genes showing a restricted expression in normal tissues (Table S4), genes showing a differential expression in GBMs and/or colorectal tumors were identified. We found five genes with a restricted expression in normal tissues and a differential expression in colorectal tumors: MUC17, UNC93A, TMEM211, SLC01B3, and FAT (Fig. S3B). Among these, SLC01B3 (also known as LST-2) seems the most interesting, for several reasons. First, overexpression of this gene has been clearly observed in a variety of tumors, including breast, prostate, and gastrointestinal cancers (10, 11). Second, this gene has been reported to code for the key methotrexate transporter in colorectal cancer (12). Finally, SLC01B3 has been seen to be frequently mutated in colorectal cancer (Table S1) (13).

Fourteen genes have been identified that show a restricted expression in normal tissues and a differential expression in GBMs: CDH10, GSG1L, IL1RAP, TRPM8, CXorf1, TMTFC3, SMO, CNGA3, CSF1R, ADORA3, ATP6V0E1, CD99, LTBR, and RARRE3 (Fig. S3A). CDH10, a type II classical cadherin, shows restricted expression in normal brain and overexpression in GBM. Another interesting gene, SMO, is a known oncogene for basal cell carcinoma (14) that activates the Hedgehog pathway, leading to an increase in angiogenic factors (15), cyclins D1 and B1 (16), and antiapoptotic genes, and a decrease in apoptotic genes (EAS) (17). In addition, ADORA3, an adenosine receptor, has been observed to be highly expressed in a variety of tumors and has been suggested as a potential therapeutic target (18).

Genes Differentially Expressed in Colorectal Tumors and GBMs. We next looked at genes differentially expressed in GBM and colorectal tumors regardless of their expression pattern in normal tissues other than their tissue of origin (Table S1). Fig. 4 shows the expression profile of 73 (Fig. 4A) and 26 (Fig. 4B) genes for GBMs and colorectal tumors, respectively. Among the genes identified as differentially expressed in colorectal tumors is TACSTD2 (also known as TROP2), a recently described oncogene (19). This gene has also been identified in genetic translocations involving cyclin D1 in ovarian and breast tumors (20). Also for colorectal tumors, we were able to identify EPHA2, an ephrin receptor, as a potential tumor target.

Among the genes differentially expressed in GBM, CD248 (endosialin or TEM1) is one of the most interesting because it was originally characterized as the target of a monoclonal antibody (E8) that recognizes vasculature in several tumor types (21), and it was subsequently identified as highly expressed transcript in endothelial cells of colorectal cancer (22). CD248 is strongly overexpressed in GBM (23) but, as expected from its localization in tumor vasculature but not tumor cells, GBM cell lines show no CD248 expression (Fig. 4A).

CMTM8, GABRE, GPR172A, SLC12A7, and TNFRSF12A (see below) are other genes that are overexpressed both in GBM and colorectal samples. SLC12A7, a potassium/chloride transporter, is involved in the invasiveness and proliferation of cervical cancer and ovarian cancer cells when activated by insulin-like growth factor 1 (24).

A Pathway-Based View of the Cancer Surfaceome. The qPCR expression data, together with the remaining genomics data assembled in this study, provide the basis for constructing a rudimentary map of the genetic/epigenetic alterations related to the surfaceome in both types of tumors (Fig. S4). The approach taken here was based on searches in protein–protein interaction (PPI) networks looking for common interaction partners among differentially expressed surfaceome genes. In addition, we have also looked at the KEGG pathways (www.genome.ad.jp/kegg/pathway.html) identified for these genes, as well as the corresponding literature. For example, a number of overexpressed cell surface proteins in GBM are involved in RAS signaling, a pathway known to be important in this tumor type (25). However, one of the most provocative findings from this analysis was the overexpression in GBM of a number of cell surface proteins, including CAV1, TNFRSF12A, TNFRSF19,
EDA2R, CD40, and LTBR, that signal through the TNF-receptor-associated factor (TRAF) family. TRAF proteins, known to activate JUN and NF-κB, are important in mediating cell survival/death (26, 27). Recently, Zheng et al. (28) reported that the silencing of TRAF2 suppressed growth of a GBM cell line and sensitized the cells to radiation. Tumors exploit inflammatory responses to enhance their own growth and invasiveness, and TNF, a proinflammatory cytokine, appears to act as an endogenous tumor promoter in some systems (29). Production of TNF is elevated in various types of human cancer, has positive correlation with tumor grade, and associates with poor prognosis (30, 31). Taken together, our results suggested that these cell surface TNF receptors may be important for the growth and invasion of GBM.

Regarding colorectal tumors, the same type of analysis points to the importance of the ERK/MAPK pathway because overexpression of several cell surface-coding genes that activate this pathway were identified, including EPHA2, AREG, GRIN2B, CELSR3, SLC12A7, and MC1R. Amphiregulin (AREG), a cell surface member of the EGF family (32), is released after cleavage by ADAM17, and it can then bind to EGFR, leading to activation of the ERK/MAPK pathway.

CT Genes Coding for Cell Surface Antigens. More than 90 genes coding for CT antigens have been identified in the last decades (8). The striking feature of a substantial number of CT genes is their restricted expression in normal tissues—testis—and their anomalous expression in a wide array of human malignancies (8). Because of their high degree of cancer specificity, CT antigens, such as MAGE-3 and NY-ESO-1, have been prime cancer vaccine targets (33, 34). CT antigens characteristically have an intracellular location, nuclear and/or cytoplasmic. Clearly, cell surface antigens with CT features would be of great interest for antibody-based therapies, but to date no validated CT cell surface antigens have been demonstrated. Based on that, and as a first step, we screened the MPSS and qPCR dataset for all surface coding genes with predominant or exclusive expression in testis. More than 119 candidate genes were identified (Table S5). To further enrich our set of candidates with bona fide CT characteristics, we evaluated the expression pattern of all 119 candidates in UniGene (www.ncbi.nlm.nih.gov/unigene) and selected those annotated with restricted expression in testis. A total of 22 candidates of the 119 were selected, as shown in Table S5.

Among these, the anion transporter SLC06A1 was identified previously by Lee et al. (35) as a CT antigen by serological screening of recombinant expression libraries of human cancer with human serum (SEREX), providing validation for our approach to defining putative cell surface CT antigens. Another cell surface coding gene, FMR1NB (also known as NY-SAR-35), was also identified by SEREX as having a characteristic CT pattern of expression (36). However, the subcellular localization of FMR1NB is still uncertain.
Because the great majority of testis-restricted CT antigens are encoded for by the X chromosome, we examined the surfaceome encoded by this chromosome. There are 134 TM-containing genes encoded for by the X chromosome (Table S1). By using the MPSS analysis shown in Fig. 3, we observed that 6 of 134 genes have an expression pattern biased toward testis: TMEM31, FMRINB, FATE1, ILIR32, GPA34, and ACE2. In addition to FMRINB (CT37), two other antigens, FATE1 (CT43) and ILIR32 (CT13), have been identified previously as CT antigens, although FATE1 also appears to be localized to the endoplasmic reticulum, according to ontology databases. TMEM31, a poorly characterized gene found to be differentially expressed in melanoma (37), represents a promising candidate cell surface CT coding gene. Interestingly, we have also identified GPA34, a cell surface antigen already identified as a candidate for immunotherapy in stomach and ovarian tumors (38). However, GPA34 is also expressed in normal stomach and a limited number of other normal tissues in addition to testis, and so it would not be considered a testis-selective, not testis-restricted, CT antigen. Similarly, ACE-2 would also be considered a testis-selective CT antigen because of its predominant expression in testis and its expression pattern in normal tissues. Candidate CT surface genes listed in Table S5 were also analyzed in Oncomine (www.oncomine.org) by looking for genes overexpressed in tumors. A total of 14 of the 22 genes showed overexpression in at least one tumor type ($P < 0.01$).

A surprising outcome of this search for cell surface antigens with CT characteristics is the paucity of candidates, despite the extensive list of highly cancer-specific intracellular CT antigens.

Final Remarks. We have used bioinformatics tools to define the human cell surfaceome, the set of putative cell surface proteins encoded by the human genome. Our methods agree with other estimates that at least 20% of all human genes code for proteins that are located at the cell surface. By integrating data from several large-scale platforms, we extensively annotate the human surfaceome, giving a special attention to xenogenetic, allogeneic, and epigenetic diversity.

By using gene expression data, we identified a subset of genes for experimental validation by using a large-scale qPCR platform. We identified dozens of genes as candidate tumor markers for GBM and colorectal tumors. Although there was public evidence for a tumor-specific expression for some candidates, we were able to identify many previously uncharacterized markers that considerably expand the list of potentially useful drug targets. Because we have evaluated the expression of the surfaceome in a panel of normal tissues, our analyses are also useful to avoid possible clinical side effects based on the expression of a potential target in any given normal tissue. We envisage that the present dataset will be of general value to the cancer research community.

Materials and Methods

Samples were obtained after explicit informed consent and with local ethics committee approval. Total RNA was prepared from cultured cells and from tissues by using TRIzol (Invitrogen). The qPCRs were performed in 96.96 dynamic array chips (Fluidigm) following the fabricant instructions. Bioinformatics analyses were performed as described previously (39, 40). Detailed information for materials and methods is described in **SI Methods**.

ACKNOWLEDGMENTS. We are indebted to Douglas Cancherini, Paula Asprino, Gladis Wilner, Bruna Quevedo, Ana Paula Medeiros Silva, Ken Livak, and Min Lin for technical assistance. This work was supported by intramural funds from the Ludwig Institute for Cancer Research and National Institutes of Health Fogarty International Center Grant 5D43TW007015-02.