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As previously shown, higher levels of NOTCH1 and increased NF-κB signaling is a distinctive feature of the 
more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone mar-
row (BM). Differences between BM and UCB cell composition also account for this fi nding. The CD133 marker 
defi nes a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further 
evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immu-
nomagnetically purifi ed human CD34+ and CD133+ cells from BM and UCB were used on gene expression 
microarrays studies. UCB CD34+ cells contained a signifi cantly higher proportion of CD133+ cells than BM 
(70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ 
and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of 
many transcription factors (TFs). Promoter analysis on all these TF genes revealed a signifi cantly higher fre-
quency (than expected by chance) of NF-κB-binding sites (BS), including potentially novel NF-κB targets such as 
RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such 
as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR 
and were all signifi cantly positively correlated. Taken together, our data indicate the existence of an intercon-
nected transcriptional network characterized by higher levels of NOTCH1, NF-κB, and other important TFs on 
more primitive HSC sets.

Introduction

The umbilical cord blood (UCB) is a rich source of 
hematopoietic stem cells (HSCs). HSC from UCB trans-

planted in marrow-ablated receptors provides a better recon-
stitution of early and committed hematopoietic progenitors, 
a higher thymic function, and T cell receptor (TCR) diversity 
compared to bone marrow (BM) [1,2]. Also, purifi ed CD34+ 
cells from UCB show a superior overall engraftment in 
NOD/SCID mice, higher migration ability across fi lters, and 
the capacity to generate T lymphocytes when cultured on 
fetal thymic organ cultures [3–6].

The basis for the differences observed between BM and 
UCB transplants are not well defi ned. Some of them can be 
partially explained by the different cellular composition 
of UCB and BM graft, while others, could be attributed to 

intrinsic cellular and molecular features related to the posi-
tion of the CB-HSC and BM-HSC in the hierarchy of the HSC 
development.

In a previous study, we analyzed comparatively the 
global gene expression of CD34+ HSC from UCB and BM, 
and showed that CD34+ HSC from UCB have a higher ex-
pression of transcriptional targets and components of the 
constitutive nuclear factor kappa B (NF-κB) pathway in com-
parison to CD34+ HSC from BM [7]. In addition, proteins 
such as NOTCH1 that positively regulate NF-κB activity [8,9] 
were found at higher levels on UCB HSC [7]. We attributed 
this feature to the more primitive state of the UCB CD34+ 
HSC.

However, CD34+ cells represents a heterogeneous cell 
population composed of early and committed HSC in 
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percentage of CD133 positive cells among CD34 positive 
cells, before and after the immunomagnetic selection using 
anti-CD34 antibodies. A nonparametric paired t-test was 
used to statistically access the changes on cell composition 
after the selection procedure.

RNA isolation

Total RNA from HSC samples were obtained using the 
Trizol LS reagent, according to the manufacturer’s instruc-
tions (Invitrogen, Carlsbad, CA), and RNA was quantifi ed by 
spectrophotometry at 260 nM. Samples used for the microar-
ray experiments were pooled and purifi ed with RNeasy Kit 
(Qiagen, Valencia, CA) and RNA quality was assessed by 
agarose gel electrophoresis through 28S and 18S ribosomal 
RNA visualization.

Microarray experiments

Gene expression analysis was performed with Amersham 
CodeLink UniSet Human I BioArrays (Amersham 
Biosciences, Piscataway, NJ), containing ~10,000 probes, as 
previously described [14]. Basically, Biotin-labeled cRNA 
generated from RNA samples were hybridized to oligonu-
cleotide arrays and detected with a Cy5-Streptavidin con-
jugate. Microarray fl uorescence images were acquired with 
a GenePix 4000B scanner using the software GenePix Pro 
6.0 (Axon Instruments, Foster City, CA). Images were then 
analyzed with the software CodeLink Expression Analysis 
(CodeLink EXP v4.1; Amersham Biosciences) and the result-
ing normalized expression values were used for further 
analysis.

In order to obtain a representative expression profi le of 
each of the cell types studied, we adopted a pooling strategy. 
For each cell type, 2 pools were generated with an equal 
number of independent samples. The number of samples 
used for BM CD133+, UCB CD133+, and UCB CD34+ pools 
were 5, 4, and 3, respectively (eg, 2 pools for BM CD133+ 
microarrays, with 5 independent samples in each pool). 
Exceptionally, bone marrow CD34 expression profi les were 
generated from cells obtained from 2 distinct donors, in 
duplicates.

The complete microarray data was deposited at 
ArrayExpress and can be accessed at http://www.ebi.
ac.uk/microarray-as/ae (ArrayExpress accession: E-MEXP-
1890).

Microarray data analysis

Hierarchical clustering. After excluding spots masked in 
any of the microarrays, a total of 9,925 genes were used to 
group the expression profi les, according to their similarities. 
The software Cluster 3.0 was used in the cluster procedure 
using a Spearman Rank Coeffi cient-based correlation metric 
and the Average Linkage method. Java TreeView was used for 
dendrogram generation [15,16].

Differential expression and promoter analysis. Gene ex-
pression profi les of CD133 HSC (from BM and UCB) were 
compared to those of CD34 HSC (from BM and UCB) and 
differentially expressed transcripts (upregulated or down-
regulated on CD133 HSC) were defi ned with the aid of the 
software SAM V3.00—Signifi cance Analysis of Microarray 
[17] using a nonpaired two class analysis and T statistics.

different developmental stages [10]. In fact, BM and UCB 
CD34+ HSC differ in their subpopulation compositions 
and the differences observed may refl ect a higher propor-
tion of more primitive CD133+ cells among UCB CD34+. 
For instance, in BM only around 35% of CD34+ cells express 
CD133, whereas in UCB, around 50% do so [11].

The surface marker CD133 defi nes a more primitive sub-
population of CD34+ cells that are highly enriched in long-
term culture-initiating cells and NOD/SCID-repopulating 
cells compared to CD34+ CD133− cells [11]. Also, CD133+ 
UCB and BM cells, are postulated to have hemangioblast 
potential [12,13].

Our hypothesis is that a specifi c genetic network that 
involves, at least, the NF-κB pathway, characterizes more 
primitive HSC. To test this hypothesis, we analyzed the dif-
ferential gene expression profi le between immunomagneti-
cally selected CD133+ and CD34+ HSC, derived from UCB 
and BM. In the light of recent published data, our results 
may indicate the existence of an interconnected regulatory 
transcription network, which integrates the co-expression of 
NF-κB, NOTCH1, and other important transcription factors 
(TFs), related to primitive characteristics of HSC and their 
proposed hemangioblast potential.

Materials and Methods

Isolation of CD34+ and CD133+ HSC

All samples were obtained after informed consent. The 
study was approved by the institutional Ethics Committee. 
Bone marrow and UCB mononuclear cells from all samples 
were obtained by centrifugation over Histopaque®-1077 
(Sigma, St. Louis, MO) and CD34+ or CD133+ cells 
were immunomagnetically purifi ed using MACS Direct 
Progenitor Cell Isolation Kit (Miltenyi Biotec, Bergisch 
Gladbach, Germany). Purity was accessed by fl ow cytom-
etry (FACS; Becton Dickinson, Franklin Lakes, NJ) using 
anti-CD45 and anti-CD34 or anti-CD133, and isotype con-
trols (Becton Dickinson), as previously described [7]. Mean 
purity of the sample pools used on microarray experiments 
were all >90%.

As mentioned, CD133+ cells are a subpopulation of 
CD34+ cells. Thus, while virtually all HSCs imunomagneti-
cally selected using anti-CD133 antibodies co-express CD34 
(CD133+CD34+), HSC selected using anti-CD34 antibodies 
correspond to a population with variable percentages of 
CD133+ cells (CD133±CD34+). In order to simplify nomen-
clature in this work, HSC samples are referred only by the 
marker used for immunoselection, except when otherwise 
specifi ed.

Flow cytometry evaluation of CD34 and CD133 
co-expression

To defi ne to which extent CD34 and CD133 markers are 
co-expressed on HSC populations from UCB (n = 9) and BM 
(n = 5), mononuclear cells were evaluated by fl ow cytome-
try using monoclonal antibodies against CD34 and CD133, 
and appropriate isotype controls (Becton Dickinson). The 
percentages of CD133+ cells in the CD34+ population in 
BM and UCB samples were graphed and statistically com-
pared (Mann–Whitney test) using GraphPad Prism 4.0. 
Additionally, six UCB samples were evaluated for the 
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UCB, except those also used for microarray experiments, 
were derived from a previous study [7].

For real-time PCR experiments, we used an ABI Prism 7300 
Sequence Detection System using TaqMan PCR Master Mix 
and probes (Applied Biosystems) for NFKB2 (Hs00174517_
m1), RELB (Hs00232399_m1), NOTCH1 (Hs00413187_m1), 
GATA3 (Hs00231122_m1, detecting both isoforms), RUNX1 
(Hs00231079_m1, detecting AML1b and AML1c isoforms 
and Hs01021967_m1, specifi c for AML1c), USF1 (Hs00273038_
m1), TAL1 (Hs00268434_m1, detecting both isoforms), 
HOXA9 (Hs00365956_m1), HOXB4 (Hs00256884_m1), 
HES1 (Hs00172878_m1), and HEY1 (Hs00232618_m1). PCRs 
were carried in duplicates under standard thermal cycling 
conditions.

The housekeeping gene GAPDH was used to normalize 
sample loading (Applied Biosystems). For each gene, real 
time PCR was initially carried for BM samples and the 2 BM 
CD34+ samples with the median ΔCT value were used as cal-
ibrator samples during evaluation of the UCB samples, thus, 
allowing the comparison of all samples. The 2−∆∆Ct method 
[26] was used to calculate the expression, relative to the 
median ΔCT value of the BM CD34+ samples. A nonpara-
metric Mann–Whitney test was used to calculate statistically 
signifi cant differences. Transcript levels obtained for all HSC 
samples were used in a statistical correlation analysis using a 
nonparametric Spearman Rank test. GraphPad Prism 4.0 was 
used to calculate statistics and to generate graphs.

Results

Differences in the percentage of CD34+ cells 
expressing CD133

Our fl ow cytometric analysis on mononuclear cells 
revealed that while virtually all CD133+ cells express the 
CD34 marker, irrespective of the source evaluated (data not 
shown); CD34+ cells from BM and UCB signifi cantly dif-
fer (P = 0.001, Mann–Whitney) in their CD133 composition. 
While in BM, only around 40% of the CD34+ cells express 
the CD133 marker, around 70% of the UCB CD34+ cells co-
express the CD133 marker (Fig. 1). Furthermore, evaluation 
of marker composition on UCB samples before and after the 
immunomagnetic selection of CD34+ cells, revealed a sig-
nifi cant increase (P = 0.0029, paired t-test) in the percentage 
of cells co-expressing both markers. For instance, the mean 
percentage of CD133+ cells among CD34+ cells increased 
from 63% to 80% after the procedure (Supplementary Fig. 1; 
Supplementary materials are available online at http://
www.liebertpub.com/).

Overall gene expression similarities of HSC

Hierarchical clustering allowed us to compare the cells 
based on overall transcriptional similarities. As can be 
seen on the dendrogram displayed in Figure 2, experi-
mental replicates from BM CD34+ samples were grouped 
together. Importantly, transcription profi les of pools com-
posed of similar cells (marker and source) grouped together. 
Furthermore, the UCB CD34+ and UCB CD133+ groups 
appear as a closely related group, while, BM CD133+ and 
BM-CD34+ do not. In fact, BM CD133+ clustered with both 
UCB groups rather than with BM CD34+, which appears as 
a very distinct group.

In an attempt to identify TFs that could be responsible 
for the upregulation of some of these genes on CD133 HSC, 
the on-line tool TELIS–Transcription Element Listening System 
[18]—was used in two distinct promoter analyses.

Initially, TELIS was used to identify TF-binding sites (BS) 
signifi cantly over-represented in the promoters of all upreg-
ulated genes on CD133+ cells, as compared to promoters of 
all human genes. TELIS was run using promoters of 3 distinct 
sizes: 300 bp and 600 bp upstream of the transcription start 
sites (TSSs) and a region 1,000 bp upstream to 200 bp down-
stream the TSS. Promoters in the TELIS database were iden-
tifi ed by gene symbols obtained from the SOURCE database 
(http://smd.stanford.edu/cgi-bin/source/ sourceSearch), 
using NCBI IDs from the microarrays. TF-BS were identi-
fi ed by high stringency searches (set to maximum, 0.95) 
using position-specifi c scoring matrices (PSSM) from 
TRANSFAC [19].

Next, in an attempt to identify key TF that could be 
responsible for the regulation of downstream TF, we car-
ried a similar promoter analysis, but using only a subset 
of the upregulated transcripts in CD133+ cells, compris-
ing TFs, regulators and activators (collectively referred as 
TF in this work). These TFs were identifi ed using the Gene 
Ontology classifi cation contained in the microarray output 
(IDs: GO:0003700, GO:0030528, and GO:0016563). Figures 
depicting the expression profi les of these TF were gener-
ated using HeatMap Builder (http://quertermous.stanford.
edu/heatmap.htm). As none of the TF-BS databases used by 
TELIS (TRANSFAC or JASPAR) contained matrices for the 
Notch-regulated TF CSL, the over-representation of CSL 
BS could not be accessed. Conversely, RSAT—Regulatory 
Sequence Analysis Tools [20,21]—permits the upload and 
evaluation of larger promoter sequences, with user-defi ned 
TF-BS matrices. This allowed us to construct a TF-BS matrix 
for CSL [22] which, together with other selected BS (iden-
tifi ed by TELIS or corresponding to TF upregulated on 
CD133+ cells), were searched in the promoters of selected 
genes. Matrices were obtained from the public TRANSFAC 
database [19]. Promoter sequences, 2,000 bp upstream of the 
TSS of the TF upregulated on CD133 HSC, were obtained 
from PROMOSER [23], using NCBI accession numbers from 
the microarray as references. Promoters from NOTCH1 and 
all NF-κB members were similarly obtained and analyzed. 
A background Markov model (order 0) was estimated from 
input sequences and only individual matches with a P value 
equal or inferior to 0.0001 were considered.

In order to identify potential regulatory elements dis-
tinctly represented on alternative promoters, RSAT was also 
used to search TF-BS and to compare alternative upstream 
(distal) promoters to proximal promoters of selected genes. 
Promoters of AML1c and TAL1a transcript isoforms (NCBI 
Acc: D43969 and S53245, respectively) were retrieved using 
PROMOSER, and the promoter from GATA3a was retrieved 
using BLAT [24,25].

Real-time quantitative-PCR

Total RNA from samples were reverse transcribed using 
the High Capacity cDNA Archive Kit (Applied Biosystems, 
Foster City, CA), according to the manufacturer’s instruc-
tions. A total of 25 UCB samples (11 CD34+ and 14 CD133+ 
samples) and 29 BM samples (18 CD34+ and 11 CD133+ 
samples) were used. All the CD34+ samples from BM and 
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Supplementary fi les containing detailed results, includ-
ing the complete list of differentially expressed genes 
(Supplementary File 1), and additional results from the fol-
lowing promoter analyses, with all promoters sequences and 
TF-BS matrices used (Supplementary Files 2, 3, and 4), can be 
found at our Web site http://www.hemocentro.fmrp.

Promoter analysis

Promoters from 740 genes, upregulated on CD133+ cells, 
were found and analyzed by TELIS (out of 1,079 gene names 
obtained from SOURCE). In all 3 analyses, using distinct pro-
moter sizes, BS for MZF1, SP1, and EP300, as well as GC box 
elements, were considered signifi cantly over-represented. In 
addition, BS for USF, AP2, AP4, and NF-κB were also con-
sidered over-represented, depending on the promoter size 
analyzed (Supplementary Files 2 and 3).

Further analyses of the promoters from 55s TF upregu-
lated on CD133+ cells and found by TELIS (out of 70 obtained 
from SOURCE), revealed the over-representation of NF-κB 
BS, in all 3 analyses using distinct promoter sizes. In addition 
to NF-κB BS, binding sites for SP1 and E47 were also identi-
fi ed as over-represented, indicating their potential involve-
ment in the transcriptional regulation of some of the factors 
upregulated on CD133+ cells (Supplementary Files 2 and 3).

By using RSAT, we were able to extend our analysis to the 
promoters of 73 of the 75 TFs upregulated on CD133+ cells. 
Binding sites for NF-κB, E47 and SP1 were found on 60, 51, 
and 62, respectively, of the promoters evaluated. In contrast, 
only 22 of these genes contained BS for CSL (Supplementary 
File 2).

In addition to the matrices identifi ed by TELIS and the 
constructed CSL matrix, we selected matrices derived 
from BS of some TF that were upregulated on CD133+ 
cells, including AML1, GATA3, and MYB. The presence of 
BS was then evaluated on the promoters of selected genes 
(Supplementary Files 2 and 4). CSL BS were found in the 
promoters of all NF-κB members (except NFKB1) and of, 
NOTCH1, HOXB4, EP300, MYB, and of TAL1a, GATA3a, 
and AML1c isoforms. GATA3 BS were also found on the 
promoters of these 3 isoforms and of RELA, RELB, NFKB1, 
HOXA9, HOXB4, MYB, USF, and TAL1b. Finally, NF-κB BS 
were found on the promoters of GATA3a, MYB, USF1, EP300, 
HOXA9, HOXB4, both isoforms of TAL1, and AML1 and on 
the promoters of all NF-κB members.

When the alternative promoters of distinct isoforms of 
AML1, GATA3, and TAL1 were compared, a striking pattern 
became evident (Supplementary Files 2 and 4). Although BS 
for EP300, E47, GATA3, and CSL were exclusively found on 
the promoter of the AML1c isoform, SP1, and GC elements 
were only found on the promoter of AML1b. Furthermore, 
AML1c promoter contained more BS (with higher score 
and closer to the TSS) for MZF1 and USF1, as compared 
to the AML1b promoter. A similar trend was observed on 
the promoters of GATA3. Binding sites for NF-κB, MYB, 
CSL, and GATA3 were exclusively found on the promoter 
of the GATA3a isoform, which also contained more BS for 
MZF1, with higher score and closer to the TSS, as compared 
to GATA3b promoter. Moreover, SP1 and GC elements were 
enriched on the GATA3b promoter. Finally, few differences 
were identifi ed between the alternative promoters of TAL1, 
with exclusive BS for CSL and E47 on TAL1a promoter, and 
MYB on TAL1b promoter.

Differentially expressed transcripts between CD34+ 
and CD133+ cells

The comparison of the gene expression profi les between 
CD34+ and CD133+ samples using SAM resulted in a set 
of 1,399 differentially expressed genes, with a median false 
discovery rate of 29.89% (delta value of 0.492). Of those, 
1,195 were upregulated, while 204 were downregulated on 
CD133+ samples. The mean and median fold change of this 
set of differentially expressed genes was around 1.7.

Crucial genes involved with the G2-M transition, such as 
CDC25B (and CDC25C), CDC2, and Cyclin B1 had the high-
est levels on BM CD34+ cells, followed by BM CD133+, UCB 
CD34+, and fi nally UCB CD133+ cells, which had the low-
est levels. This pattern was observed for many other genes 
involved in cell division (Supplementary Fig. 2).

A total of 75 TFs were identifi ed and selected from the 
1,195 transcripts upregulated in CD133+ cells, including 
factors such as EP300, MYB, RUNX1/AML1, GATA3, USF1, 
TAL1/SCL, HOXA9, and HOXB4 (Fig. 3).
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FIG. 1. Percentage of CD133+ cells in the CD34+ popu-
lation. Mononuclear cells from BM and UCB were submit-
ted to a fl ow cytometry analysis to evaluate the percentage 
of CD133-expressing cells among the CD34+ fraction. The 
percentage of CD133+ cells signifi cantly differ (P = 0.001, 
Mann–Whitney) between bone marrow (BM) and umbilical 
cord blood (UCB).

CD133-UCB (1)
CD133-UCB (2)
CD34-UCB (1)
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CD133-BM (1)
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CD34-BM (B1)
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FIG. 2. Hierarchical cluster analysis. Expression values 
from all microarrays were used to group transcription pro-
fi les according to their similarities. Distinct pool (1 or 2) or 
experimental duplicates (A1, A2 and B1, B2) are indicated 
between parenthesis. Abbreviations: BM, bone marrow; 
UCB, umbilical cord blood.

05-SCD-2008_0397.indd   324 3/1/2010   10:38:19 PM

http://www.liebertonline.com/action/showImage?doi=10.1089/scd.2008.0397&iName=master.img-000.jpg&w=161&h=137


TRANSCRIPTION FACTORS AND HSC PRIMITIVENESS 325

Real-time PCR transcript evaluation

Evaluation of the transcript levels by real-time PCR con-
fi rmed the result found by microarray (Fig. 4). Except for 
TAL1, transcript levels of GATA3, RUNX1 (AML1b plus 
AML1c isoforms), USF1, HOXA9, and HOXB4 were at signif-
icantly higher levels on BM CD133+ cells, compared to BM 
CD34+ cells. In addition to the TF selected by the microar-
ray analysis, NFKB2, RELB, and NOTCH1 were also evalu-
ated, and followed the same expression pattern. In contrast, 
except for USF1, HOXB4, and HOXA9, there was no signifi -
cant difference between UCB CD34+ cells and UCB CD133+ 
cells, for any of these transcripts.

Furthermore, except for USF1, all transcripts were at 
higher levels on UCB CD34+ cells than BM CD34+ cells. 
A higher expression level was also found on UCB CD133+ 
cells, compared to BM CD133+ cells, except for HOXA9, 
GATA3, USF1, and NFKB2.

The quantifi cation of the AML1c isoform, using a differ-
ent Real Time probe on a subset of samples from CD34+ 
and CD133+ cells from BM, revealed that the relative fold 
difference between BM CD34+ and CD133+ samples was 
similar to that observed with the unspecifi c RUNX1 probe 
(AML1b-c). However, for this specifi c subset of samples 
analyzed, while the difference obtained using the probe 
for the AML1c isoform was signifi cant (P = 0.0322), the 
one obtained with the AML1b-c probe (P = 0.0835) was not 
(Supplementary Fig. 3).

The quantifi cation of the HES1 and HEY1, carried on a 
subset of the samples, revealed that HES1 was expressed 
at statistically signifi cant higher levels on UCB, compared 
to BM for both, CD34+ (P = 0.0380) or CD133+ cells (P = 
0.0003). For HEY1, there was also difference between BM 
and UCB when comparing CD34+ cells (P = 0.0036), but 
not CD133+ cells. Moreover, in BM, HEY1 levels were sig-
nifi cantly higher (P = 0.0061) in CD133+ cells compared to 
CD34+ cells (Supplementary Fig. 4).

Correlated expression patterns

To uncover potentially co-regulated genes, we carried a 
correlation analysis between the evaluated transcripts. Our 
results allowed us to detect a statistically signifi cant corre-
lation between all the transcripts evaluated (Table 1). As can 
be seen in Table 1, NOTCH1, RUNX1 (AML1b-c), GATA3, 
and HOXA9 are all correlated to each other with high corre-
lation coeffi cients and statistical signifi cance (Spearman r > 
0.7 and P < 0.0001). Similarly, NOTCH1, RELB, and GATA3 
are also connected by high correlation coeffi cients (r > 0.7 
and P < 0.0001). In addition, highly correlated levels are 
found between HOXB4 and HOXA9 transcripts (r = 0.87), as 
well as between RELB and NFKB2 (r = 0.88).

Gene Symbol/NCBI Acc 
AHR/NM_001621 
ARNT2/NM_014862 
ATF6/NM_007348 
CBL/X57110 
CSDA/NM_003651 
CXXC1*/NM_014593 
DDIT3/NM_004083
DLX2/NM_004405 
EP300/BC053889 
EPC1/NM_025209 
ETV3/L16464 
ETV5/NM_004454 
FOXG1*/NM_005249 
FOXN2*/U57029 
GATA3/BC006793 
GLI3/NM_000168 
HOPX*/NM_139211 
HOXA9*/NM_002142 
HOXB4/NM_024015 
HOXB5/NM_002147 
HOXC6/NM_004503 
HOXC9/NM_006897 
HSF1/NM_005526 
JUND/NM_005354* 
KLF11*/NM_003597 
KLF2/NM_016270 
LHX2/NM_004789 
LZTS1/AF123659 
MEF2D/L16794 
MSL3L1/NM_006800 
MSRB2*/NM_012228 
MXD1*/NM_002357 
MXI1/NM_130439 
MYB/NM_005375 
NCOA2/NM_006540 
NKX2-2/NM_002509 
NPAS1/NM_002517 
NROB2/NM_021969 
NR1H2/NM_007121* 
NR112/NM_033013 
NR3C2/NM_000901 
OLIG2/NM_005806 
PAX6/NM_000280 
PBX2/NM_002586 
PGR/NM_000926 
PML/NM_033238 
POU3F1/NM_002699 
POU6F2*/NM_007252 
PRDM1/AF084199 
PRRX2*/NM_016307 
RUNX1/D43968 
RXRA / X52773 
SALL1/NM_002968 
SALL2/AB002358 
SHOX*/NM_000451* 
SIM2/NM_005069 
SRF/NM_003131 
TAF6/NM_005641 
TAL1/NM_003189 
TEAD1/NM_021961 
TFAP2C/NM_003222 
TSC22D3*/NM_198057 
USF1/NM_007122 
WBSCR14*/NM_032994 
ZFP37/NM_003408 
ZHX3*/NM_015035 
ZNF132/NM_003433 
ZNF167*/NM_018651 
ZNF217/NM_006526 
ZNF277/AK027128 
ZNF444*/NM_018337 
ZNF446*/NM_017908 
ZNF96*/BC041661 
No Symbol*/NM_005119
No Symbol*/NM_002892
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FIG. 3. Transcription factors upregulated in CD133+ cells. 
The expression profi les of transcription factors, regulators, 
and activators, upregulated in CD133+ cells, were used to 
generate a heatmap depicting the relative microarray tran-
script levels (darker indicating higher expression levels). 
Abbreviations: BM, bone marrow; UCB, umbilical cord 
blood.
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UCB CD34+ cells, compared to BM, and guided us during 
gene expression analysis.

By carrying a cluster analysis of the microarrays expres-
sion profi les (Fig. 2), we observed the closest grouping for 
the experimental replicates from BM CD34+ cells, refl ecting 
the experimental reproducibility of the microarray platform. 
Moreover, the independent grouping of the transcription 
profi les from pools composed of similar cells (CD34 or CD133 
from BM or UCB) indicates that our pooling approach gener-
ated a representative gene expression profi le, refl ecting over-
all similarities and differences between the analyzed cells.

Interestingly, the close grouping of UCB CD34+ and UCB 
CD133+ samples followed by BM CD133+ and fi nally by BM 
CD34+ samples, indicates that the CD133 marker, in fact, 
defi nes a more primitive population inside the BM CD34+ 
population, with molecular characteristics closer to the 
ontologically more primitive UCB. Nevertheless, this result 
also indicates that even CD133+ cells from BM and CD133+ 
from UCB are different, as they do not group together. Our 
results are in line with the observation carried for the prim-
itive CD38 negative subset of CD34+ HSC, which is more 
abundant in UCB [27]. Even this subpopulation has distinct 
intrinsic properties depending on the ontological age [28].

Correlation analysis using a subset of samples from 
CD34+ and CD133+ cells from BM, revealed a signifi cant 
correlation between the transcript levels of TAL1 and AML1c 
(P = 0.0006 and R = 0.59); in contrast, there was no signifi -
cant correlation between TAL1 and AML1b-c (P = 0.06 and 
R = 0.30; Supplementary Fig. 3).

Discussion

In a previous study, we showed that a higher expression 
of transcription targets and components of the NF-κB path-
way is a distinctive feature of UCB CD34+ HSC as compared 
to BM CD34+ and this could be related with the primitive 
state of the newborn’s HSC [7].

In order to better characterize the differences between 
cellular composition of CD34+ HSC from BM and UCB, we 
used fl ow cytometry to evaluate the percentage of CD133+ 
cells. In line with reported data [11], our results revealed that, 
while virtually all CD133+ cells express the CD34 marker 
irrespective of the source evaluated, CD34+ cells from BM 
and UCB signifi cantly differ in the percentage of CD133 co-
expressing cells (Fig. 1). These results clearly identifi ed a 
higher proportion of more primitive CD133+ cells among 
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the potential role of this protein on the regulation of other 
TFs identifi ed in this study.

The protein EP300 is a histone acetyltransferase (HAT) 
that acts on the chromatin structure by reducing the affi n-
ity of histones for DNA and consequently, increasing the 
accessibility of transcriptional regulatory proteins to the 
DNA. This action can occur in a generally broader way, or 
in a more restricted gene-specifi c way, guided by the inter-
action of EP300 with sequence-specifi c DNA-binding pro-
teins [50]. Interestingly, in addition to guiding EP300 to 
specifi c promoters, the regulatory proteins themselves may 
be acetylated and regulated by EP300 [51]. Strikingly, EP300 
interacts and acetylates many of the TF identifi ed by us, 
including MYB [52], NF-κB [53], GATA1/3 [54], TAL1 [55,56], 
and RUNX1 [57]. Moreover, EP300 also binds to NOTCH and 
promotes the transcription of its targets [58].

The MYB protein plays a critical role on HSCs [36], con-
trolling their proliferation and differentiation through its 
interaction with EP300 [34]. Interestingly, acetylation of 
MYB by EP300 increases its DNA-binding activity, upreg-
ulating the expression of the HSC marker CD34, one of its 
targets [52]. Of notice, the enrichment of MYB on more prim-
itive HSC was reported a long time ago and members of the 
NF-κB family are involved in the positive regulation of its 
transcription [59]. In line, acetylation of NF-κB members by 
EP300, also positively regulates their activity [53], and this 
could contribute to the potential role of NF-κB in the upreg-
ulation of some transcripts (including MYB), on more prim-
itive HSC subsets, as observed by us.

By restricting the analysis to the promoters of the genes 
upregulated on CD133+ cells, we could identify the over-
representation of NF-κB-binding sites, further corroborating 
our assumption that NF-κB may, in fact, play an important 
role in the control of the characteristics of primitive HSC [7].
Consistently, NFKB2 and RELB were expressed at signifi -
cantly higher levels on BM CD133+ cells, compared to BM 
CD34+ cells. Moreover, compared to BM, UCB cells had sig-
nifi cantly higher levels for these transcripts for both, CD34+ 
or CD133+ cells (except for NFKB2 between BM and UCB 
CD133+ cells, P = 0.0992).

The transcript quantifi cation of selected TF in a large 
number of independent HSC samples, allowed us to identify 
the existence of statistically signifi cant correlations between 
evaluated transcripts and further explore the potential regu-
latory mechanisms underlying the genetic program of prim-
itive HSC.

As most of the CD133 positive cells are CD34bright and 
CD34dim cells are CD133 negative [29], we reasoned that upon 
immunomagnetic selection of CD34+ cells, the percentage 
of CD133 co-expressing cells could increase, as the selection 
method would preferentially isolate cells with greater num-
ber of CD34-binding epitopes (CD34bright cells), what would 
explain the high proportion of CD133+ cells found among 
CD34+ selected cells reported by different authors [30–32]. 
In fact, our analysis corroborated our assumption revealing 
that, despite the use of different markers, CD34+ and CD133+ 
cells immunomagnetically selected from UCB are very simi-
lar in terms of cellular composition. This would partially 
explain the close grouping of UCB CD133+ and UCB CD34+ 
samples obtained in our cluster analysis (Fig. 2).

An important characteristic of primitive stem cells is 
their cycling status, which is related to their quiescence. 
BM CD34+ cells display increased cycling compared to 
UCB CD34+ cells, as defi ned by the percentage of cells in 
G2/M phase (5.3% and 0.3%, respectively) [33]. In agree-
ment, crucial genes involved with the G2-M transition, 
such as CDC25B (and CDC25C), CDC2, and Cyclin B1 were 
expressed at higher levels on BM CD34+ cells, compared to 
UCB CD34+ cells (as determined by microarray). The same 
was true for CD133+ cells, which had a much lower expres-
sion level compared to CD34+ cells from the corresponding 
source. Moreover, several other genes involved in cell divi-
sion followed the same pattern (Supplementary Fig. 2), thus, 
refl ecting a more quiescent state of UCB/CD133+ cells, as 
compared to BM/CD34+ cells.

By further comparing microarray expression profi les, we 
identifi ed many TFs at higher levels on CD133+ samples, 
compared to CD34+ samples (Fig. 3). Among these, we 
found many factors with important functions related to the 
regulation of hematopoiesis in the early stages of develop-
ment as well as to self-renewal of HSC such as, EP300 [34,35], 
MYB [34,36], RUNX1/AML1 [37,38], GATA3 [39], USF1 [40,41], 
TAL1/SCL [42–45], HOXA9 [46–48], and HOXB4 [49].

Although the enrichment of these TF on CD133+ cells 
defi nes, per se, biologically signifi cant regulatory mecha-
nisms related to the proposed hemangioblast potential of 
these cells, promoter analyses carried in this work allowed 
us to identify many know, as well as potentially new regula-
tory mechanism acting on HSC.

The over-representation of EP300-BS in the promoters of 
the whole set of upregulated transcripts on CD133+ cells, 
and the upregulation of EP300 itself lead us to investigate 

Table 1. Correlation Coefficient Values Between Evaluated Transcripts

 NOTCH1 RELB NFKB2 GATA3 RUNX1 HOXA9 HOXB4 USF1 TAL1

NOTCH1
RELB 0.80
NFKB2 0.71 0.88
GATA3 0.83 0.71 0.62
RUNX1 0.79 0.63 0.54 0.80
HOXA9 0.72 0.51 0.40 0.80 0.70
HOXB4 0.65 0.47 0.29 0.67 0.75 0.87
USF1 0.53 0.46 0.42 0.60 0.40 0.69 0.53
TAL1 0.41 0.42 0.26 0.47 0.61 0.55 0.71 0.44

Spearman correlation coeffi cient (r) values are displayed for each comparison. Values above 0.7 are in bold to 

highlight strong correlations.
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When previously identifi ed alternative promoters of 
AML1 [73], GATA3 [24], and TAL1 [74] were compared, few 
differences were identifi ed between the alternative promot-
ers of TAL1. In contrast, marked differences between the 
alternative promoters of AML1 and GATA3 became evident. 
Binding sites for NF-κB, MYB, NOTCH1-binding-partner 
CSL, and GATA3 were exclusively found on the promoter 
of the GATA3a isoform, which also contained more BS for 
MZF1, with higher score and closer to the TSS, as compared 
to GATA3b promoter. Strikingly, all of these BS were con-
sidered over-represented by TELIS or were associated to TF 
upregulated on CD133+ cells.

A similar trend was observed on the alternative pro-
moters of AML1. The AML1c promoter contained exclusive 
BS for EP300, TAL1-binding-partner E47, GATA3, and the 
NOTCH1-binding-partner CSL. Furthermore, the AML1c 
promoter also contained more BS for MZF1 and USF1, com-
pared to the AML1b promoter. Interestingly, recent works 
have described the regulation of AML1 by factors including 
TAL1 [75,76].

To investigate whether the AML1c isoform would, in fact, 
be regulated by TAL1, we specifi cally quantifi ed AML1c tran-
scripts on a subset of BM CD34+ and CD133+ samples. In 
corroboration to the proposed preferential use of the AML1c 
promoter, the transcript levels of TAL1 were signifi cantly 
correlated to AML1c but not to AML1b-c. Moreover, the 
relative fold differences between BM CD34+ and CD133+ 
samples were signifi cant for AML1c, but not for AML1b-c. 
Altogether, our data may indicate that the higher transcript 
levels of the AML1c isoform on more primitive HSC, would 
be, partially controlled by TAL1/E47.

A higher level of NOTCH1, on more primitive HSC, may 
also be related to increased NF-κB signaling. An increas-
ing amount of data indicate the coordinated activation of 
NOTCH and NF-κB signaling on normal and pathologi-
cal processes [77–79]. Also, EP300 is involved in the cross-
talk between both pathways [80]. Interestingly, NOTCH1 
is known to positively regulate NF-κB activity, upregulat-
ing the transcription of NF-κB subunit, and facilitating the 
nuclear retention of NF-κB complexes [8,9] as well as de-
repressing the NFKB2 promoter [81,82]. Further highlighting 
the potential interplay between these TF on HSC, NOTCH1, 
RELB, and NFKB2 transcript levels were highly correlated. 
Accordingly, we could identify CSL-BS in the promoters of 
all NF-κB members (except NFKB1) and NOTCH1, whereas 
NF-κB BS were found on the promoters of all NF-κB mem-
bers but not on NOTCH1.

During development, NOTCH1 has a known and indis-
pensable role in the emergence of defi nitive HSCs from 
endothelial cells of the aorta-gonad-mesonephros [64].

Upon cell–cell contacts, the interaction of specifi c ligands 
to Notch receptors promotes their cleavage and the release 
of the Notch intracellular domain (NICD), which translo-
cates to the nucleus and binds the TF CSL forming, together 
with Mastermind-like proteins (MAMLs), a ternary com-
plex. This complex can recruit transcriptional coactivators, 
such as histone acetyltransferase p300, to activate Notch tar-
get genes, including HES1 and HEY1 [83].

Many studies have attributed important roles for Notch 
signaling in the regulation of differentiation and self-
renewal of distinct types of stem cells [84]. Specifi cally on 
HSC, although some reports have concluded that increased 
Notch signaling promotes self-renewal and decreases 

Interestingly, NOTCH1 and GATA3 transcripts were 
highly correlated and recent works published during the 
course of our research described the direct regulation of 
GATA3 by NOTCH1, what could account for the strong cor-
relation observed by us [60–62]. Accordingly, we could iden-
tify CSL-BS in the promoter of GATA3a.

Transcript levels of USF1 and HOXB4 were also highly 
correlated, what may refl ect the potential regulation of 
HOXB4 transcription by USF1 [40,41]. Interestingly, HOXA9 
and HOXB4 levels were highly correlated to each other 
(r = 0.87) and also with RUNX1, GATA3, and NOTCH1, indi-
cating that other factors in addition to USF1 may play more 
important roles on the regulation of HOXB4 in HSC.

Of notice, the presence of CSL BS in the promoters of the 
AML1c isoform and the correlation between NOTCH1 and 
AML1b-c transcripts is in line with the proposed down-
stream role of RUNX1, relative to NOTCH1, in the gener-
ation of HSC from the “hemogenic endothelium” [63,64]. 
However, as GATA3 BS were also found on the promoter of 
the AML1c isoform, and their transcripts levels are highly 
correlated, this would also indicate a positive regulation 
of the AML1c isoform by GATA3. Also, by interacting to 
BS found on the promoters of both AML1 isoforms, NF-κB 
could contribute to their regulation. In line, evaluation of 
AML1b-c by Real-Time PCR confi rmed their higher levels on 
BM CD133+ cells, compared to BM CD34+ cells (the same 
pattern of NFKB2 and RELB).

In addition to NF-κB-binding sites, E47 BS were also 
over-represented in the promoters of the TF upregulated 
on CD133+ cells. The E47 protein is coded by the E2A gene 
and it can bind to DNA as a homodimer or as a heterodimer 
together with TAL1 [65]. While E47 homodimers are consid-
ered transcriptional activators, TAL1 can exert positive or 
negative effects on transcription [66].

During development, TAL1 is required for genesis of 
HSC but is dispensable for adult HSC functions such as 
engraftment, self-renewal, and differentiation into myeloid 
and lymphoid lineages. Nevertheless, megakaryopoiesis and 
erythropoiesis depend on TAL1, whereas lymphocytes are 
partially affected by the absence of this TF [67]. In contrast, 
E47 is not required for HSC emergence, but, in its absence, 
adult HSC homeostasis and lymphoid differentiation are 
affected [68,69].

Interestingly, Notch signaling can interfere with E47 and 
TAL1 through distinct mechanisms, including the inhibition 
of E47 by a noncanonical CSL-independent Notch pathway, 
presumably via Deltex [70], or inducing the ubiquitination 
and degradation of both [71]. In contrast, TAL1 can pro-
mote the activation of Notch signaling [66], whereas E47 
can induce the expression of diverse genes associated with 
Notch signaling including NOTCH1 [68]. The above obser-
vations may indicate a negative feedback mechanism that 
could take place during lymphoid differentiation at later 
stages, fi ne-tuning the activity of TAL1 and E47 [68,72].

Of great interest, alternative promoter usage, allows the 
selective expression of different transcript isoforms from a 
given gene. With that in mind, we reasoned that an alterna-
tive promoter with the exclusive (or preferential) presence 
of TF-BS considered over-represented by TELIS (or corre-
sponding to TF upregulated on CD133+ cells), could poten-
tially indicate its preferential use on more primitive HSC, 
with the consequent expression of the corresponding tran-
script isoform.
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the expression of genes responsible for the distinct charac-
teristics of the HSC populations studied. Better understand-
ing of the molecular mechanisms controlling adult HSC 
properties, such as self-renewal and differentiation, would 
greatly impact the in vitro generation and expansion of HSC 
and could improve the early reconstitution of certain blood 
lineages (such as T-cells), following HSC transplantation.
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